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Abstract
This paper proposes a new method for correcting spurious displacement
vectors obtained by using particle image velocimetry. Unlike methods that
generate and use statistics from neighboring vectors toward outlier
identification, a bootstrapping process is employed to generate statistics for
each component. The mode-ratio criterion, defined as the normalized
absolute value of the difference between the mode of the generated statistics
and the actual value on the field, is used to identify and tag spurious
components. The bootstrapping process is repeated to generate new
statistics from the untagged components. This process is then repeated
multiple times. The resulting mode field is used as the correction field. Two
different displacement fields, each with a different error type, are artificially
generated to evaluate the performance of the method. The evaluation is done
by measuring the deviation between the resulting mode field and the perfect
component field. The method is then tested on a real turbulent jet flow,
obtained from www.pivchallenge.org, and the effect of the spatial gradient is
discussed.

Keywords: PIV, particle image velocimetry, outlier detection,
outlier correction, bootstrapping

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Particle image velocimetry (PIV) has been extensively used
to measure the velocities and other kinematic properties of
the observed fluid flows. The PIV method illuminates a
cross-section of the desired flow that is seeded with reflective
particles with a pulsed laser sheet, while sequentially imaging
this illuminated flow field. The resulting images can then
be processed by various algorithms to obtain the velocity
flow fields [1, 2]. However, the results are almost always
prone to spurious vectors which are mostly due to the seeding
inhomogeneities, effects of turbulence, poor image quality,
varying intensity light sheet, laser reflections, etc. These
spurious vectors, or simply outliers, not only corrupt the
velocity field, but also affect the differential and integral
velocity quantities such as vorticity, streamlines, etc. Thus, it
is indeed important to develop a method to accurately correct
outliers to prevent such data corruption.

Many outlier detection methods have been proposed that
determine their detection criteria based on neighboring vector

statistics. Westerweel [2] first proposed three automated
outlier detection methods: the local mean method, the global
mean method and the local median method. The local mean
method defines the residual as the difference between a vector
in question and the mean of its eight surrounding vectors, the
global mean defines the residual as the difference between
a vector in question and the mean of the entire velocity
field and the local median method defines the residual as
the difference between a vector in question and the median
of its eight surrounding vectors. A threshold is then chosen
and compared with the residual of each vector to determine
if it is spurious. Westerweel’s results show that the local
median method provided the best results. This method,
however, requires choosing different optimal threshold values
for different velocity fields, since no single threshold was
found to be optimum for all flows.

Nogueira et al [3] proposed the method of local coherence.
The residual, calculated for all vectors in the field, is defined
as the sum of the differences between a vector in question
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and its eight surrounding vectors, normalized by the sum
of the surrounding vectors. The location of the minimum
residual field is then marked as the local coherence region.
Based on the user-defined parameter, the method then starts
including vectors into the local coherence region, thereby
validating vectors. The vectors that are within the specified
tolerance are accepted as good vectors, while those that are
not are marked as spurious. The method involves picking
two parameters, which are the number of vectors to include in
the local coherence region before they are validated, and the
tolerance within which a vector is considered a non-spurious
vector. However, the tolerance by which a vector can be
considered good assumes a priori knowledge of the flow in
order to determine how much flow gradients can be tolerated.

Song et al [4] incorporated an outlier detection method
into their Delaunay tessellation particle tracking velocimetry
method. The detection method is based on whether the
incompressible continuity equation is satisfied within a
Delaunay triangle. They hypothesized that the total flux
crossing all sides of the triangles will be minimal if a vector is
not spurious. This method was found to be effective; however,
the detection method is part of their Delaunay tessellation
particle tracking velocimetry method, and cannot be applied
separately as a post-processing algorithm.

Liang et al [5] used the cellular neural networks (CNN)
to create a detection scheme by obtaining the stable states of
neurons. Weights of the neurons are calculated by subtracting
the residual between two vectors from the selected threshold
level. Then, the CNN identifies outliers by using the calculated
weight of the neurons and the neuron’s outputs from the
algorithm. Overdetection (valid vectors detected as outliers)
and undetection (outliers not detected by the method) concepts
were introduced for performance criteria. The results suggest
a significant improvement on the robustness and accuracy of
outlier detection by comparing with the local median test
proposed by Westerweel [2]. However, the CNN fails to
satisfactorily identify outliers when the velocity field gradient
is large.

Shinneeb et al [6] proposed a variable threshold outlier
detection method in 2004. The CNN method and the original
local median test were tested, but with variable, instead of
constant, threshold which is determined as a function of
location in the field of view. At first, an aggressive local
median test is applied so that any suspected outliers can be
detected. These suspected outliers (which may include some
overdetected vectors) are then replaced by applying a local
Gaussian filter about the vector in question. The variable
threshold outlier detection method is applied to two simulated
fields and a real axisymmetric jet flow. For the simulated
tests, the performance of the method is measured by counting
the number of overdetections and undetections. The authors
confirmed that the CNN method generally performs better than
the local median test, and that varying the thresholds also gives
better results. The variable thresholds are more independent
of the velocity gradient than the constant thresholds. However,
the Gaussian filter involves choosing the appropriate filter
width. Varying such a parameter will have an impact on
the number of overdetections, and the optimum value for the
filter’s width varies depending on the experimental conditions.

Young et al [7] described a general approach for validating
PIV vectors, where vectors are compared to a smoothed vector

field that reliably characterized the measured vector field. To
maintain sufficient velocity gradient information, a thin-plate
spline model is used within an iterative weighted routine to
generate a smoothed representation of the displacement field.
The local difference between the actual and smoothed vectors
is then used toward determining if the vector is an outlier.

The most recent study of outlier detection was performed
by Westerweel and Scarano [8]. They proposed a modified
local median test by normalizing the original local median
method’s residual with the median of the residuals of the
eight neighboring vectors of the vector in question. They
also noted that the normalization factor tends to approach zero
for a region with low turbulence intensity. This makes the
residual very small and the modified local median test very
large. To compensate, an empirically determined constant was
added to the denominator. The method was tested on many
experimental flows, and the probability density functions of
their residuals were shown to collapse for values less than
or equal to 2, and diverge for values greater than 2, thereby
suggesting a universal method for detecting outliers.

As outlined above, many of the previous studies in outlier
detection are based on statistics that are locally obtained,
which do not provide solutions for outlier correction. The
purpose of this paper is to therefore propose a new method
that uses statistics generated from the entire data population to
identify and correct outliers, while reducing the effect of spatial
gradients. This paper will start by explaining the statistics
generation method that uses a bootstrapping method in
section 2, the detection criteria will be described in section 3,
the testing methods done on the simulated fields will be
explained in section 4, section 5 will describe the displacement
correction approach, section 6 will provide an analysis of
optimum parameters’ determination based on the results of
the simulated field testing, section 7 will validate these
results through the application of the correction method to a
turbulent jet flow as well as discuss the associated required
computational effort, the effects of spatial gradients and
interrogation resolutions will be elaborated in section 8 and,
finally, section 9 will conclude this paper.

2. Statistics generation by bootstrapping

In general, the bootstrapping process [9–11] allows for
statistical inference (i.e. mean, standard deviations, modes,
etc) for a data set. This is achieved by sampling the data set
with replacement. Sampling with replacement means that after
data points are randomly sampled to create a subsample, they
are reinserted into the original data set for the next subsequent
random sampling. For each sampling, the desired statistics are
calculated. This process is repeated multitudinous times, after
which, the distributions of the statistics are examined. This
bootstrap distribution represents the distribution of the original
data set. It has the advantage of working even when theory
fails, not requiring that the distribution be specific, i.e. normal,
or that the sample sizes be large, and finally providing greater
accuracy than other methods [12]. The presently incorporated
bootstrapping process shares the fundamental procedure of
generating data, but is slightly different because of its
implementation on two-dimensional data and collaborative
use of an interpolation routine, which has previously been
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Figure 1. The histogram of a point after the bootstrapping process is performed. Left: histogram of a point from a component field without
outliers. Right: histogram of the same point from the same vector field as shown in the left, where this point has been replaced by a spurious
component.

used by Rignot and Spedding [13], Dabiri and Gharib [14]
and Spedding and Rignot [15]. The bootstrapping process
begins with randomly sampling a specified percentage p
of components from the component field. This sample is
then used to interpolate the remaining field using Gridfit,
which incorporates a cubic interpolation algorithm [16]. The
sampling and interpolation processes repeat until a specified
number, �, of interpolated component fields are obtained.
The samples used to interpolate this field are returned to the
original data set, after which, new samples are randomly taken
to interpolate a new component field. In this manner, the
interpolated fields are achieved by sampling with replacement.
Since either component field can be independently prone to
outliers, the bootstrapping process is applied separately to
each of the component fields. The mode-ratio bootstrapping
process can be sensitive to spatial gradients, which are a
function of the velocity magnitudes, as well as the spatial
resolution of flow structures. To eliminate any magnitude
effects, each component field is normalized by its maximum
magnitude before being processed. The implementation of the
bootstrapping method is further discussed in section 5.

3. Filtering criterion

Figure 1 (left) shows the histogram resulting from applying the
bootstrapping method to a component field without outliers
at a specific location. The distribution is unimodal, and its
mode and actual component values, shown on top of the
figure, are identical. Figure 1 (right) shows the histogram
at the same point resulting from applying the bootstrapping
method to the same field but with outliers randomly distributed
through the field, where this particular point is an outlier. The
distribution is now bimodal and the difference between the
mode and the actual component value is significant (14.54
pixels). The higher peak is due to the successive accumulation
of the interpolated values, and the lower peak corresponds to
the number of times that the actual value, which is an outlier,
was taken as the seed for interpolation. Also noteworthy from
figure 1 (right) is that the value of the mode calculated from
the outlier field is very close to the perfect component value
(a difference of 0.06 pixels).

3.1. Definition of the mode and the mode-ratio criterion

In order to identify outliers similar to those shown in figure 1,
the mode-ratio criterion is developed. The mode m within each
histogram is defined as the midpoint of the highest frequency
bin. The residual is defined as the absolute value of the
difference between the mode of a component in question and
the actual component value:

|mi,j − xi,j |. (1)

This residual is normalized by the mode, henceforth referred
to as the mode ratio and compared with a threshold t to form
the detection criterion,∣∣∣∣mi,j − xi,j

mi,j

∣∣∣∣ � t. (2)

When the mode ratio is greater than the threshold, the
component in question will be tagged as an outlier. The initial
starting threshold assumes that an outlier will deviate more
than 20% from its mode. Therefore, the starting threshold, t,
is set to 0.2.

3.2. Implementation of the mode-ratio criterion

If the mode value is near zero, the mode ratio approaches
infinity even when the residual is small, resulting in good
components being identified as outliers. Thus, a tolerance
level, tol, is introduced to overcome the aforementioned
challenge. The tolerance is compared with the residual, which
can be described by the following equation:

ri,j = |mi,j − xi,j | < tol. (3)

If the difference between the mode and actual values was
within tolerance, then that component would be considered as
good without further outlier verification with the mode-ratio
criterion.

The mode bin at each (i, j) location for all interpolated
fields is determined by

bi,j = max(xi,j,l) − min(xi,j,l)

�/2
, l ∈ �. (4)

In order to determine the mode accurately, the mode bin is
adjusted such that it is less than twice the tolerance.
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Figure 2. Left: the perfect first simulated displacement field with an A value of 400. The field comprises displacements in 50 nodes in each
axis, with an inter-node distance of 16. Right: the perfect second simulated displacement field. It is a vortical cellular flow where Nx and Ny

are chosen to be 4, the values of Lx and Ly are chosen to be 800, and the field comprises displacements in 50 nodes in each axis, with an
inter-node distance of 16.

3.3. Multi-pass implementation

The multi-pass approach is implemented to improve the
accuracy of the outlier detection. With the multi-pass
approach, the number of passes, k, is first specified. Then,
a sufficiently large threshold, t, is used to identify and remove
the most severe outliers. The detection process is then repeated
with an incrementally reduced threshold value in order to
identify and remove the next series of less severe outliers.
Note that higher passes imply smaller incremental intervals
and vice versa. This process is repeated until k is reached and
t becomes zero. The equation for determining the threshold
value for each pass is

t −
(

t

k − 1

)
(n − 1), (5)

where n implies the nth pass and can range from 1 to k.

4. Testing method

4.1. Simulated displacement fields

The correction method is tested on simulated displacement
fields, where all information is known a priori, to measure its
performance. Two simulated displacement fields are chosen.
Following Shinneeb et al [6], the first displacement field
is a potential flow, satisfying the Laplacian incompressible
continuity equation

∇ · −→
U = 0, (6)

where the displacement field is

u = Ax2 (7)

v = −2Axy (8)

and the constant, A, which is set to 400, determines
the maximum magnitude of the displacement field. The
displacement field is plotted for x and y values ranging from

0 to 800. The number of nodes is chosen to be 50, with an
inter-node distance of 16 (see figure 2 (left)).

The second field is a vortical cellular flow, where the
displacement field is

u = Vmax cos

(
xNxπ

Lx

+
π

2

)
cos

(
yNyπ

Ly

)
(9)

v = Vmax sin

(
xNxπ

Lx

+
π

2

)
sin

(
yNyπ

Ly

)
. (10)

Lx, Ly represent the size of the field, Vmax is the maximum
displacement magnitude and Nx, Ny are the number of vortices
in the x and y directions respectively. Lx and Ly are set to 800.
Vmax is set to 10 and Nx and Ny are set to 4. Similarly, this field
is divided into 50 nodes, with an inter-node distance of 16 (see
figure 2).

4.2. Types of error

Two types of error are introduced into the simulated
displacement fields. The first type of error (type 1) is
a completely random error. The amount of deviation for
both the vector direction and the magnitude are determined
randomly, and the locations of the outliers are also randomized
throughout the entire field. This type of error typically results
in outliers that are most often surrounded by good vectors.
Shinneeb et al [6] state that this type of error usually occurs
in a practical PIV flow if the noise on a correlation plane is
erroneously identified as the signal peak. While Westerweel
[2] has suggested that the number of spurious vectors in
properly acquired PIV data should be around 5% of the total
number of vectors in the field, for this study, 10% of the
vectors are replaced by outliers in order to more severely test
the mode-ratio bootstrapping method.

Following Shinneeb et al [6], the second type of error
(type 2) is designed to produce clustered outliers. Unlike the
former study that allowed for larger variations, for this study,
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Figure 3. Left: the first simulated displacement field with 10% of its vectors replaced by random outliers. The locations, deviations and
magnitudes of the outliers are chosen randomly. Right: the first simulated displacement field with 10% of its vectors replaced by clustered
outliers. The locations of the outliers are chosen randomly, but they are made to form clusters of a specified size. The size of the cluster, in
this case, contains at most six vectors. The deviation is also controlled; for this case, the vectors are deviating 10% in magnitudes from their
corresponding true displacement values, and 15◦ in direction. The red vectors highlight the outliers.
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Figure 4. Left: the second simulated displacement field with 10% of its vectors replaced by random outliers. The locations, deviations and
magnitudes of the outliers are chosen randomly. Right: the second simulated displacement field with 10% of its vectors replaced by
clustered outliers. The red vectors highlight the outliers.

the magnitudes of the vectors are set to deviate at most 25%
of the original displacement value, and the direction of the
vectors is limited to deviate as far as 15◦. In this manner, the
outliers will be harder to detect, and therefore a better test for
the mode-ratio method. The number of outliers within a cluster
is chosen to be at most 6, as our observation of outliers within
properly acquired data suggests that most clusters contain at
most six vectors. This type of error happens in a practical
PIV flow mostly because of imperfections in the PIV image
or low seeding density. Figures 3 and 4 show the two types
of errors on the two aforementioned simulated fields. As with
the previous error, the number of spurious vectors in the field
is set to be 10% of the total number of vectors in the field.

Shinneeb et al [6] found that this type of error is in general
harder to detect, as can be seen from these figures. Therefore
in total, there are four displacement fields that are examined:
field 1 with type 1 error (F1T1), field 1 with type 2 error
(F1T2), field 2 with type 1 error (F2T1), field 2 with type 2
error (F2T2).

5. Approach toward correction and performance
assessment

5.1. Parameters summarized

As discussed above, the mode-ratio bootstrapping method is
dependent on several parameters as follows.
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Table 1. Tested parameters.

Sampling percentages 5 15 25 35

Iterations 500 700 1000
Tolerance 0.001 0.0025 0.005
Mode-ratio passes 8 12 16

(1) Sampling percentage (p): the fraction of the data that are
taken from the component field, from which the remaining
field is interpolated (section 2).

(2) Iterations (�): the number of times the bootstrapping
method is repeated (section 2).

(3) Threshold (t): the threshold to detect spurious
components, initially set to 0.2 and then incrementally
reduced to zero (sections 3.1 and 3.2).

(4) Tolerance (tol): the tolerated difference between the
actual component value and the mode, above which the
normalized residual of a point will be tested against
the current threshold. If the residual is below the tolerance
level, then the displacement component will be considered
non-spurious, regardless of the value of the normalized
residual (section 3.2).

(5) Passes (k): the number of passes the mode ratio has
iteratively performed before the final threshold is reached
(section 3.3).

In order to determine the optimal values for these
parameters, the mode-ratio bootstrapping method is tested for
a range of parameters, as is summarized in table 1, on the four
displacement fields presented in section 4.

5.2. Approach for correcting outliers

In addition to accurately detecting outliers, the outlier
detection process can incorrectly detect good components as
outliers, as well as fail to detect certain outliers. Therefore, it
is important to observe how many non-spurious components
are mistakenly detected as outliers (overdetection), how many
outliers are not detected (undetection) and how close the modes
of the overdetected and accurately detected components are to
the perfect values. The difference between the modes of the
over/accurately detected components will be referred to as the
mode error. While it is desirable to have small overdetected
counts, it is also desirable that the overdetected components
are replaced accurately. Therefore, for each field and type
of error, the mode error of the accurately detected outliers,
the mode error and number of the overdetected outliers, and
the number of undetected outliers are statistically studied to
determine the performance of the mode-ratio bootstrapping
correction method.

5.3. Algorithmic flow and performance analysis methods

Figure 5 shows the flowchart of the algorithm’s procedure,
which is applied to each of the vector components separately.
First, a certain percentage of the data, p, is randomly sampled
from the component field. This selection is used to interpolate
the rest of the field using Gridfit. This process repeats until the
specified number of iterations, �, is reached. Upon completion,
at each point, interpolated values are collected among all the
interpolated fields, and a histogram is set up to obtain the

mode for outlier identification. If identified as outliers, the
detected components are tagged and excluded from the original
population. The remaining population is then used to repeat
the entire process k times, and with each pass, the threshold
value is incrementally reduced until zero. The final mode
values are then used to correct the detected components within
the field.

To assess the performance of the correction method, the
mean and standard deviation of the mode error for each field,
error type and component are calculated for overdetected and
accurately detected components. Because of the limitation
of the interpolation at the boundaries, boundary points are
excluded in the analyses for a more accurate performance
assessment of the correction method. The mean is used to
measure the overall accuracy of the modes, and the standard
deviation is used to indicate if the accuracy is consistent
throughout the field. The goal is to, therefore, find which sets
of parameters best minimize these statistics, the overdetections
and the undetections. These parameters will henceforth be
referred to as optimal parameters.

6. Results

In this section, the statistical analyses are discussed and the
resulting optimal parameters are presented in terms of the
robustness of the detection and correction results with respect
to the tested fields and error variations. The parametric studies
show that the results for the u and v components are very
similar; therefore, only the results for the u component are
discussed.

For easier comparison, the y-axes in figures 6–8 of the
mode error statistics and overdetection counts are scaled.
Toward this end, the y-axes of the mode error statistics for
these plots are broken into two scales, from 0 to 0.3 and from
0.3 to the maximum. For the overdetection counts, the two
scales range from 0 to 200 and from 200 to the maximum. In
this manner, the variation of the data amongst these different
plots can be easily compared.

6.1. Optimum parameters for the correction method

The algorithm replaces the detected components with their
corresponding modes. Components that are not tagged as
outliers consist of non-spurious and spurious components.
The undetected spurious components are referred to as
undetected components and treated as good components
which will not be replaced by the modes. The detected
components comprise correctly detected outliers, and non-
outliers incorrectly detected as outliers, or overdetected
components. It is then of interest to observe how close the
modes of the accurately detected and overdetected components
are to their perfect component values. Consequently, the set
of parameters resulting with the fewest undetected outliers
will be highly favorable. Furthermore, it is desirable to
minimize the number of overdetected components, because
too many overdetections may cause insufficient points for
proper interpolation of the fields. A fairly large number
of overdetected vectors, however, might be tolerable if the
associated mode errors are acceptably small. Therefore, the
optimum parameters should minimize the overdetections and
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Figure 5. Flowchart describing the algorithmic procedure for outlier detection and correction.
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Figure 6. Statistics of the mode error for accurately detected u components for field 1 (left) and field 2 (right).

undetections, while also minimizing the mode error statistics
among the tested fields.

Figure 6 shows the mode error statistics of the accurately
detected outliers for all parametric studies for field 1 (left) and

field 2 (right). In general, 15% data sampling can be seen
to produce the lowest mode error statistics, thus yielding the
most accurate correction results. While 25% data sampling
produces good results for type 1 errors, in general, they
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Figure 7. Statistics of the mode error of the overdetected u components for field 1 with type 1 errors (left) and type 2 errors (right).
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Figure 8. Statistics of the mode error of the overdetected u components for field 2 with type 1 errors (left) and type 2 errors (right).

produce large mode error statistics for type 2 errors. Also
noticeable is that for the type 2 errors, as the number of passes
increases, the mode error statistics decrease.

In addition to investigating the accurately detected
statistics, it is also necessary to investigate the mode error
statistics for overdetected components as well as the number of
undetections in order to properly determine the performance
of the correction method. Figure 7 (left) shows the mean
and standard deviation of the mode errors and the number of
the overdetected components for field 1. No overdetections
are observed for type 1 errors except for one case with the
5% sampling size. Figure 7 (right) shows that the 35% data
sampling produces the poorest results for type 2 errors. The
25% data sampling performs slightly better than the 35%
except for some 16 passes cases, which produce only slightly
worse results than the 15%. No components are overdetected
for the 5% and 15% data sampling, except for a single case
within the 5% sampling size. Figure 8 shows the mean and
standard deviation of the mode errors, and the count of the
overdetected components for field 2. The 5% overdetection
results are statistically and quantitatively worse than other
sample percentages regardless of the type of error. Figure 8
(right) clearly shows that 15% data provide the smallest mode
error statistics without a significant increase on the number of
overdetections.

Since there are no overdetections for field 1 for the 15%
data sampling, field 2 is analyzed to determine the optimal
parameters that minimize the number of overdetections and
undetections. Figure 9 shows the overdetection mode error

Table 2. Sets of optimal parameters.

Sampling (%) Tolerance Iteration Passes

15 0.0025 700 8
15 0.0025 700 12
15 0.0025 700 16

statistics for field 2 with type 1 errors (left) and type 2
errors (right) for 15% sampling size. While the effect of
the passes is not obvious, both figures show that tolerance
levels at 0.0025 with iterations higher than 500 provide no
overdetections. Figure 10 shows the undetection counts for
the 15% data sampling results. Clearly, the 0.001 tolerance
provides the lowest undetection count for both fields, with
increasing counts as the tolerance value increases. This
trend is opposite to that seen for the overdetections shown in
figure 9, where the tolerance value of 0.001 results in
overdetection counts which are around 140. Therefore, the
tolerance value of 0.0025 is selected as a good balance between
the number of overdetections and undetections. Figures 9 and
10 also show that for the tolerance value of 0.0025, iteration
values of 700 and 1000 best minimize the overdetections
without affecting the number of undetections. Lastly, for
these parameters, the results are insensitive to the number
of passes. In summary, the number of iterations at 700 is
chosen for computational efficiency; the tolerance level is
chosen at 0.0025 to balance the number of undetections and
overdetections, and the number of passes is unspecified. These
optimal parameters are summarized in table 2.
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Figure 9. Statistics of the mode error of the overdetected u component for field 2 with type 1 errors (left) and type 2 errors (right) and 15%
sample size.

0
2
4
6
8

10
12
14
16
18

50
0

70
0

10
00 50

0
70

0
10

00 50
0

70
0

10
00 50

0
70

0
10

00 50
0

70
0

10
00 50

0
70

0
10

00 50
0

70
0

10
00 50

0
70

0
10

00 50
0

70
0

10
00

0.001 0. 0025 0. 005 0. 001 0. 0025 0. 005 0. 001 0. 0025 0. 005

8 12 16

1st Row: Iterations 2nd Row: Tolerance 
3rd Row: Passes

U
nd

et
ec

tio
n 

C
ou

nt

F1T1 F1T2 F2T1 F2T2

Figure 10. The undetection counts for 15% sampling data.

7. Application to a turbulence jet and computational
effort

To identify a single optimal parameter set from table 2, the
parameters determined in the prior sections are tested on an
experimental turbulent jet flow provided by Westerweel for the
second international PIV challenge in Busan, South Korea1.
The image pairs are 992 × 1004 pixels, and are processed
with a 32 × 32 interrogation window using a standard cross-
correlation routine with a 50% window overlap [17], resulting
in the displacement field shown in figure 11. Similar flows
were also used by Shinneeb et al [6] and Westerweel [8] to
assess the performance of their outlier detection methods on
experimental fluid flows. This particular displacement field is
most useful as it contains random errors, small outlier clusters
(2–6 outliers) and large outlier clusters (>6 outliers), as shown
by 1–3, and will therefore be a good testing field for the mode-
ratio bootstrapping method. Since this is an experimentally
obtained flow and actual locations of the outliers are unknown,
the performances of the correction methods are determined
visually. This data field is processed with the optimal
parameters listed in table 2, the results of which are discussed
below.

With eight passes (figure 12), random and small outlier
clusters (regions 1 and 2) are easily identified and corrected.

1 http://www.pivchallenge.orgpub03/CaseA/.
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Figure 11. A real turbulence jet flow field. This field is a good
example of an experimentally obtained fluid flow, with both random
and clustered errors [17].

There are, however, at least two large groups of visibly
identifiable cluster outliers (region 3) that have not been
identified and corrected. Twelve passes (figure 13) reduce the
size of these two clusters, though not completely eliminating
them. For comparison, 16 passes (figure 14) clearly show
that the random, small and large outlier clusters are identified
and corrected, except for one suspect component which does
not seem to be accurately corrected. This thereby suggests
that the detection scheme better identifies outliers at smaller
incremental steps, i.e. higher passes for large cluster sizes.
It should also be noted that the large cluster shown in 3 is
indicative of improperly acquired PIV images. It is therefore
recommended to use 8 passes for appropriately acquired PIV
images that result in outlier clusters no larger than about six
vectors, 12 passes for random and medium outlier clusters and
16 passes for large sized outlier clusters.

While highly effective, the computational effort for the
mode-ratio bootstrapping method is substantial. The present
results were obtained using a 2.6 GHz Dell PowerEdge server,
with 32 GBytes of RAM. Table 3 lists the computational times
for the tested simulation fields and turbulence jet data. It
should be further noted that the computing language used was

3519



C-S Pun et al

0 10 20 30 40 50 60
0

10

20

30

40

50

60

50 55 60
20

22

24

26

28

30

32

34

36

38

40

2

1

3

Figure 12. The mode field for the turbulence jet flow processes with 700 iterations, 15% data sampling, 0.025 tolerance and eight passes for
the second approach. The plot to the right shows a close-up view of the large cluster outlier region enclosed in the rectangular region
identified by the red box shown in the figure to the left.
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Figure 13. The mode field for the turbulence jet flow processes with 700 iterations, 15% data sampling, 0.0025 tolerance and 12 passes for
the second approach. The plot to the right shows a close-up view of the large cluster outlier region enclosed in the rectangular region
identified by the red box shown in the figure to the left.

Table 3. A summary of computational expenses.

Fields 1 and 2 (min) Turbulence jet (min)
Passes (50 × 50 vectors) (61 × 61 vectors)

8 14.12 22.15
12 21.40 32.90
16 27.86 44.10

MATLAB, and no efforts were made toward optimizing the
algorithm for speed.

8. The effects of the spatial gradient on the detection
and correction results

To address the spatial gradient effects, two factors are
considered: (1) the displacement magnitude and (2) the

resolution of the vortex cell. The displacement magnitude of
the fields is dependent on the field constants, C and Vmax, for
field 1 and field 2, respectively. The resolution is quantified in
terms of the number of nodes per vortex for the present study.
Because the tested component fields are normalized before the
algorithm is processed, the detection results are not dependent
on the magnitudes of the field but, rather, only on the spatial
gradients.

Since field 2 provided a greater challenge to the mode-
ratio bootstrapping method, the effects of the spatial gradient
on this field will be studied. To assess the effects of spatial
gradients, the total number of vortices is varied while keeping
the number of nodes per axis equal (Nx and Ny in equations (9)
and (10) are identical), which, in general, leads to the question
of flow structure resolution. In this study, the number of nodes
in field 2 is held at 50 in each of the x- and y-axes. The optimal
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Figure 14. The mode field for the turbulence jet flow processes with 700 iterations, 15% data sampling, 0.0025 tolerance and 16 passes for
the second approach. The plot to the right shows a close-up view of the large cluster outlier region enclosed in the rectangular region
identified by the red box shown in the figure to the left.

Table 4. Resolution conversion.

Number of vortex 2 3 4 5 6 7 8
cells/axis
Number of 625 277 156 100 69 51 39
nodes/vortex

parameter set with 16 passes (see table 2) is chosen to process
the vortex field with different numbers of vortices in each axis
for each run. The processed cases and their resolutions are
summarized in table 4.

Figure 15 illustrates how the detection and the correction
results change with respect to the number of vortex cells
in each axis. As can be observed from the figures, the
mode error statistics for the accurately detected components
figure 15 (right) and the number of detection errors,
figure 15 (left), increase exponentially with decreasing vortex
resolution. This is due to fewer nodes per vortex being used as
interpolation seeds, thus resulting in decreasing interpolation
accuracy. Figure 15 (right) shows that the undetection and
overdetection counts for vortex cells ranging from 2 to 4 per
axis are at most 10 (4% with respect to the total number of
outliers) and zero, respectively, for both type 1 and type 2
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Figure 15. Left: the correction results for the accurately detected vector class as a function of the number of vortex cells in each axis. Right:
the detection results as a function of the number of vortex cells in each axis.

errors. Correspondingly, their mode error statistics, figure 15
(left), are seen to be within 0.1 for type 1 errors and around
0.1 for type 2 errors, which is the typical rms noise level
observed within PIV data [8, 18]. For vortex cell numbers
larger than four per axis, the number of undetections and
overdetections, as well as their mode errors, are unacceptably
large. It is therefore recommended that if the flow structure
resolution is not satisfied, the experiment be repeated with a
smaller interrogation window to better achieve detection and
correction results.

9. Conclusions and future work

A PIV post-interrogation outlier detection and correction
method was developed based on generating statistics using
a bootstrapping procedure in order to reduce the effects
of gradients within the field. A mode ratio was defined
toward identifying outliers, and other parameters affecting this
procedure were also defined.

Parametric studies of this outlier correction method have
been performed to identify optimum parameter sets. The
method was tested on two simulated fields and two types
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of outliers, where 10% of the components are replaced with
the outliers. The mean and the standard deviation of the
mode errors with respect to the perfect displacements of the
fields were calculated and used to determine several parameter
sets that were optimal and most robust among the tested
fields. The optimal parameter sets were then tested on an
experimentally obtained turbulent jet flow inflicted with severe
outliers for validation. Visual observations revealed that the
proposed parameter sets show that eight passes are sufficient
to detect random and small-sized cluster errors, 12 passes are
sufficient to detect random, small- and medium-sized cluster
errors and 16 passes are sufficient to detect random, small-,
medium- and large-sized cluster errors. To determine the
effect of the outlier percentage on the optimum parameters,
identical data processing of these synthetic fields with 5%
outliers revealed that the optimum parameters were identical
to those in the present study. This suggests that the optimum
parameters found in the present study can be used for any
outlier percentages below 10%.

The effects of the distribution of the spatial gradient are
examined by varying the number of vortices for field 2 in both
the x- and the y-axes, while keeping the total number of nodes
constant, thereby quantifying the flow structure resolution
by the number of vortices per axis. The set of optimum
parameters determined from the parametric studies are also
applied on these different vortex fields to assess the effects
of spatial gradients on detection and correction. The results
show that the number of undetections and overdetections, as
well as the mode error statistics, increase exponentially with
an increasing number of vortices per axis, a fact which is
due to the interpolation difficulties occurring over large spatial
gradients with low resolution.

It is postulated that the mode-ratio method would be
dependent upon the performance of the interpolation method,
especially at the boundary points, which was not investigated
in this paper. For future work, it is recommended that
the effects of various interpolation methods be investigated
in order to minimize their effects and determination on the
optimum parameters that result in fast and accurate PIV outlier
detection and correction.
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